Control of a powered ankle-foot prosthesis based on a neuromuscular model.

نویسندگان

  • Michael F Eilenberg
  • Hartmut Geyer
  • Hugh Herr
چکیده

Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their intended gait speed and terrain, these controllers do not allow for adaptation to environmental disturbances such as speed transients and terrain variation. Here we present an adaptive muscle-reflex controller, based on simulation studies, that utilizes an ankle plantar flexor comprising a Hill-type muscle with a positive force feedback reflex. The model's parameters were fitted to match the human ankle's torque-angle profile as obtained from level-ground walking measurements of a weight and height-matched intact subject walking at 1 m/s. Using this single parameter set, clinical trials were conducted with a transtibial amputee walking on level ground, ramp ascent, and ramp descent conditions. During these trials, an adaptation of prosthetic ankle work was observed in response to ground slope variation, in a manner comparable to intact subjects, without the difficulties of explicit terrain sensing. Specifically, the energy provided by the prosthesis was directly correlated to the ground slope angle. This study highlights the importance of neuromuscular controllers for enhancing the adaptiveness of powered prosthetic devices across varied terrain surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neuromuscular - Model Based Control Strategy For Powered Ankle - Foot Prostheses

In the development of a powered ankle-foot prosthesis, it is desirable to provide the prosthesis with the ability to exhibit human-like dynamics. A simple method for achieving this goal involves trajectory tracking, where a specific target torque trajectory is known, and the controller issues commands to follow the trajectory as closely as possible. However, without a methodology to update the ...

متن کامل

Evaluation of a Viscoelastic Ankle-Foot Prosthesis at Slow and Normal Walking Speeds on an Able-Bodied Subject

Objectives: This paper describes further improvement and preliminarily evaluation of a novel viscoelastic ankle-foot prosthesis prototype. The objective was to control the ankle hysteresis at slow and normal walking speeds. Methods: Inspired by the ankle biomechanics, in which the hysteresis differs based on the gait speeds, a manually damping control mechanism imbedded in the prosthesis for...

متن کامل

Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been s...

متن کامل

Dynamic Modeling of a 2-dof Cable Driven Powered Ankle-foot Prosthesis

The first step to study and develop a two Degrees of Freedom (DOF) prosthesis is to derive a dynamic model for simulation and control design. In this paper, the ankle-foot prosthesis has controllable Dorsi-Plantarflexion (DP) and Inversion-Eversion (IE) DOF. We derive a compliant dynamic model for a recently developed ankle-foot prosthesis followed by identification of the actuators, transmissi...

متن کامل

Locomotion Envelopes for Adaptive Control of Powered Ankle Prostheses

In this paper we combine Gaussian process regression and impedance control, to illicit robust, anthropomorphic, adaptive control of a powered ankle prosthesis. We learn the non-linear manifolds which guide how locomotion variables temporally evolve, and regress that surface over a velocity range to create a manifold. The joint set of manifolds, as well as the temporal evolution of the gait-cycl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 2010